
On the Evolution of Ontological Signatures
Giorgos Flouris

ISTI-CNR
Via G. Moruzzi, 1,
56124, Pisa, Italy

flouris@isti.cnr.it

ABSTRACT
During ontology evolution, we are often faced with operations

requiring the addition/removal of some ontological element (e.g.,

a concept) to/from the signature. Such operations deal with the

ontological signature and are fundamentally different from

operations that deal with the axiomatic part of the ontology,

because they don’t affect our knowledge on the domain but the

non-logical symbols of the logic used to represent our knowledge

on the domain. The consequences of this observation have been

generally disregarded in the relevant literature. This paper

attempts to fill this gap by introducing the concept of “change

levels” and discussing the issues emerging from the different

nature of the two types of operations. Furthermore, two

alternative formalizations are described, which allow both types

of operations to be represented at the same level, and,

consequently, be considered of the same type.

1. INTRODUCTION
An ontology can be defined as a pair <S,A>, where S is the

vocabulary (or signature) of the ontology and A is the set of

ontological axioms [11]. The signature is usually modeled as a

simple set containing the names of all concepts, properties or

individuals that are relevant to the domain of discourse, while the

axioms specify the intended interpretation of these symbols

(names) in the given domain of discourse.

Given this definition, it seems reasonable that changes upon

ontologies should affect both the signature and the ontological

axioms. Indeed, ontology evolution has traditionally dealt with

both types of changes and many works on ontology evolution

handle both types of changes in a similar manner (e.g., [9], [16],

[19], [20]).

However, the admittance of such operations is unique in the

ontology evolution context; in the main research area studying

changes upon a corpus of knowledge, namely belief revision [8]

(also known as belief change), the signature (called language in

that context) is considered static, so these types of changes are not

considered.

As a result, the incorporation of signature changes in ontology

evolution disallows the use of many of the formal tools provided

by the related field of belief revision [7]. Thus, it is not surprising

that many of the recent works in ontology evolution, especially

the more theoretically-minded ones, do not consider such changes

(e.g., [10], [13], [17], [18]).

In this paper we argue that treating both types of changes in the

same manner is rather problematic from a methodological point of

view, because the axioms and the signature each constitute a

fundamentally different “knowledge level”, so their respective

change operations should be handled separately. This intuition is

captured by introducing the concept of “change levels” (section

2), which allows the formal study of the two types of operations.

In addition, two representation methodologies are introduced,

which allow the incorporation of the signature information into

the axiomatic part of the ontology, thus allowing a homogeneous

treatment of both operation types (section 3).

Even though most of the results presented in this paper are

applicable to many different kinds of representation formalisms

and contexts, our focus will be the ontological context; standard

logical Knowledge Bases (KBs) will be used for comparison. It

will be assumed, for simplicity, that ontologies are represented

using some Description Logic (DL) and logical KBs are

represented using First-Order Logic (FOL), so the reader is

assumed to have some basic familiarity with DLs [1] and FOL

[4].

2. CHANGE LEVELS

2.1 Components of the Symbol Level
In his seminal work [15], Newell identified two major levels in

every system (knowledge representation or other). The first, the

knowledge level, contains all the abstractions that are used to

describe a system’s behavior and is independent of any

implementation peculiarities; the second, the symbol level,

contains the mechanisms (formalisms) that allow the system to

operate.

Here, we focus on the symbol level; in the context of Knowledge

Representation (KR), this level contains the axioms or formulas

that describe system’s knowledge (i.e., the KB). A KB is based on

some logical formalism and uses various non-logical symbols

(names) representing concepts, properties, predicates etc,

depending on the context. The role of the KB is to capture the

intended interpretation of the non-logical symbols in the domain

of discourse using logical formulas; the semantics, syntax etc of

these formulas is provided by the underlying logical formalism.

This analysis motivates viewing the symbol level as being

structured from these three clearly defined, but interrelated,

components (levels): the logic, the language and the knowledge

base (see table 1).

The first level (logic) is used to describe the logical elements

(symbols) of the formalism that is used to represent our

knowledge (e.g., connectives). Moreover, the semantics, syntax

and inference mechanisms of the logic are all included in the logic

level. In the ontological context, this level consists of the formal

definition of the formalism used to formulate the axioms (e.g., DL

[1], OWL [3], RDF [14] etc).

In the second level (language), the non-logical elements that are

relevant to the domain are identified. These non-logical elements

are, essentially, the (intuitive) names that we give to the various

67

-Table 1. Levels of Knowledge Representation (Components of the Symbol Level)

Components of the Symbol Level
Example:

Knowledge Bases and Standard Logics

Example:

Ontologies and Description Logics

Level 1: Logic

Logical symbols, semantics, syntax,

inference mechanism

FOL

First-order connectives

(e.g., , , , …)

Semantics of FOL

Syntactical rules for FOL

FOL inference rules

ALC

ALC operators and connectives

(e.g., , , , …)

ALC semantics

Syntactical rules for ALC

ALC inference rules

Level 2: Language

Vocabulary and terminology of the

domain

Non-logical symbols

(names of predicates, functions etc)

Signature structure

(names of concepts, properties etc)

Level 3: Knowledge Base

Axioms, propositions

KB

(set of FOL formulas)

Ontological axioms

(set of ALC axioms)

relevant concepts, properties, predicates etc. This level

corresponds to the signature of an ontology.

The third level (KB) is the actual embodiment of our knowledge

on the domain. This level describes the interrelationships between

the various elements of the language level; the types (and the

semantics) of the allowed interrelationships are determined by the

logic level. Obviously, the KB-level cannot be defined without an

explicit and detailed description of the other two levels. In the

ontological context, it is represented by the ontological axioms.

2.2 Language-level and KB-level Changes
The discrimination of the various components of the symbol level

motivates a similar discrimination between the various types of

changes on the basis of the component of the symbol level that

they affect (see table 2).

In particular, the term KB-level change will be used to refer to

change operations that directly affect the KB level of a KR

system. Examples of KB-level changes in ontology evolution are

the addition or removal of an IsA or a restriction upon the range

of a property. An example of a KB-level operation in the standard

logical setting (belief change) is contraction.

The term language-level change will be used to refer to change

operators that directly affect the second level in table 1. Examples

of language-level changes are the addition or removal of

concepts, roles or individuals from the signature. In the standard

logical setting, such operators are not considered, because the

language is assumed to be static.

In principle, it is also possible to define logic-level changes,

referring to changes that directly affect the logic itself. An

example of such a change would be “remove the operator from

the underlying DL”. However, the underlying logical formalism is

usually considered static: neither belief revision nor ontology

evolution deal with such operations.

Notice that the word “directly” is necessary in these definitions,

because it is possible for a change to have side-effects affecting

different levels. This is true because the three levels are not stand-

alone entities but affect and depend on each other.

In particular, the removal of an element from the signature may

have side-effects on the axiomatic part of the ontology; for

example, if we are asked to remove a concept, then all axioms

that refer to this concept (e.g., classification axioms) must be

removed or otherwise amended so as not to involve the removed

concept; all such amendments are KB-level changes.

A similar situation may occur when adding axioms; for example,

if we are asked to add an IsA relation between concepts A and B

and B does not exist in the ontological signature, then it should

either be added (as a concept), or the operation should be rejected.

In this case, a KB-level change may have a language-level side-

effect.

On the other hand, removing an axiom from an ontology cannot

cause any language-level changes. Some would argue that if, after

the removal of an axiom, nothing is known regarding a certain

element (e.g., a concept), then this element should be removed.

This viewpoint is rather problematic. The fact that no interesting

information regarding an element can be inferred from an

ontology means that nothing is really known about this particular

Table 2. Change Levels and Their Support in Belief Change and Ontology Evolution

Change Levels Belief Change Ontology Evolution

Level 1: Logic

Logic-level changes

(affect the logic)

Does not support changes at this level Does not support changes at this level

Level 2: Language

Language-level changes

(affect the language)

Does not support changes at this level
Supports changes at this level; changes

may have side-effects in level 3

Level 3: Knowledge Base

KB-level changes

(affect the KB)

Supports changes at this level; changes

cannot affect other levels; if they do, they

are rejected as non-valid

Supports changes at this level; changes

may have side-effects in level 2

68

element (yet). On the other hand, removing an element from the

ontological signature implies that this element is irrelevant to the

conceptualization of the domain described by the ontology; this

statement is fundamentally different from the previous one.

Therefore, it can be argued that, if the ontology engineer wishes

to state that a particular element is irrelevant to the ontology, he

should do so explicitly, by removing the element from the

signature.

Similar arguments hold for the addition of ontological elements to

the signature. Such elements are relevant to the domain

conceptualized by the ontology at hand, since they are added to

the signature, even if they do not (yet) appear in the axiomatic

part. Thus, a language-level addition need not be coupled with a

KB-level addition.

The identification of the exact side-effects of each operation in

each level is irrelevant to this work and is omitted; the interested

reader is referred to the standard ontology evolution literature

(e.g., [9]) for a more detailed analysis of this issue.

2.3 Discussion on the Change Levels
As already mentioned, ontology evolution treats both language-

level and KB-level operations in the same way. The analysis

performed in the previous subsection implies that this approach

may not be entirely correct from a methodological point of view,

because it causes a mixture of effects upon both the axiomatic

part of the ontology (KB-level) and the signature (language-

level). The author argues that, even though both types of

operations are useful, side-effects from one change level to the

other should be avoided.

The argument can be stated more clearly with an example.

Suppose that we attempt to develop an ALC ontology (see [1] for

details on ALC), but later discover that we need more expressive

power than the one provided by ALC for the particular domain. In

that case, we are expected to switch to a new DL before adding

any axiom types not supported by ALC. For example, if we want

to add the axiom “A B {x}” in the original ontology, we have

to change the underlying DL first, then add the axiom.

If, instead, we attempted to add the new axiom directly, before

changing (manually) the logic, that would not cause the

introduction of the operator set-of ({…}) into the underlying DL

as a side-effect; no side-effect could cause a change in the

underlying DL (logic-level change). On the contrary, the

underlying ontology evolution system would not allow such a

change (i.e., the addition of the axiom “A B {x}” would be

rejected as invalid).

What happens in this example is that a KB-level change is

blocked (rejected) because it has a logic-level side-effect. This is

considered intuitively adequate. But then, why should the addition

of the axiom “A B” in an ontology whose signature does not

contain B be allowed and cause the addition of B as a new

concept (i.e., a KB-level change causing a language-level side-

effect)?

Now consider a different case: suppose that the ontology engineer

decides to switch logic by removing an operator (say) from the

DL. This, of course, should be made manually, as ontology

evolution does not support logic-level changes. After such a

change, much of the original ontology would be rendered invalid,

as several axioms may use the removed operator. Nevertheless,

we would expect the ontology engineer (rather than the ontology

evolution system) to manually amend the axioms containing this

operator so as to capture (as much as possible) the intended

meaning of the axioms of the more expressive logic (the one

containing) using the axioms of the less expressive one (the one

not containing); this should be made before the removal of the

operator from the logic.

On the contrary, we expect an ontology evolution algorithm to

apply KB-level changes as side-effects in order to amend the

axioms that are rendered invalid following the removal of a

signature element (language-level change).

The conclusion from these examples is that there should exist

clear boundaries between the various change levels disallowing

the propagation of any side-effects from one level to the other.

Should a change in one level cause changes in another level, it

should be blocked or rejected until the knowledge engineer is

given the chance to correct the problem(s) using change

operations of the appropriate level.

This viewpoint is influenced by the viewpoint employed in

standard logical formalisms. In belief change, only KB-level

changes are considered: any changes that affect other levels, or

that have side-effects in other levels, are rejected as non-valid. In

fact, the operation “remove the predicate P from the language”

would sound equally absurd to a logician as the operation

“remove the operator from the DL” would sound to an

ontology engineer.

The fact that belief change does not deal with language-level

operations should not be viewed as a shortcoming of the field. If

we confine each type of change to its own level only (by

disallowing side-effects to other levels), then language-level

operations become trivial to execute, because their language-level

side-effects can be easily identified and resolved. Indeed, the

removal of an element has no language-level side-effects, while

the addition of an element could have, but only if the same name

is already in use.

For example, if we are asked to add a class named P and there is

already a property with that name, we should first remove the

property before adding the class, as most formalisms (e.g., DLs)

require the names used for classes, properties and individuals to

be mutually disjoint. This side-effect would not exist in

formalisms without this restriction, e.g., in RDF [14] or OWL Full

[3]. In any case, such side-effects are trivial to identify, so belief

change chose to ignore them. Of course, a language-level

operation (in particular, a removal) could have a number of non-

trivial KB-level side-effects, if such side-effects were allowed.

Another problem with language-level operations is that, unlike

KB-level operations, it is not possible to formally describe a

language-level operation using DL (or FOL) constructs. One of

the consequences of this fact is that such operations render the

recently proposed mapping of ontology evolution to belief change

[7] unusable, since it is not possible to express a language-level

change in the terminology used in belief change (even if it was, it

wouldn’t be of much use, as belief change does not provide any

tools to handle such operations). A side-effect of this fact is that

many formal approaches to ontology evolution (e.g., [10], [13],

[17], [18]) do not consider language-level operations.

69

3. ALTERNATIVE REPRESENTATIONS
The previous section identified the need to keep operations

affecting different levels separate and disallow side-effects from

one level to affect the other. Even though such a rule is useful for

the formal analysis of change operations, many existing methods

do violate it.

In this section, we address this problem by describing two

alternative techniques for representing ontologies. These

representations allow the encapsulation of signature information

into the axiomatic part of an ontology, which, in turn, confines

both language-level and KB-level change operations (and side-

effects) into the KB-level.

This way, we only need to consider KB-level operations which

are well-studied and supported by both ontology evolution and

belief revision, while still being able to perform changes (and

side-effects) that would normally be classified as language-level

ones. This allows us to enjoy the best of both worlds, since all

useful operations and their side-effects can be addressed on the

same level.

Applying these representation to ontologies has other advantages

as well. First, it allows belief change techniques to be used to

handle language-level operations; second, it makes the embedding

of ontology evolution techniques into belief change

methodologies (and vice-versa) possible; third, it allows a

homogeneous treatment of all interesting operations; and, fourth,

it allows methodologies originally designed to handle KB-level

operations only to be used for language-level operations as well.

These representations should mainly take into account two

important characteristics of signatures: first, there could be

elements that are relevant to the ontological conceptualization (so

they should appear in the signature in the standard approach), but

for which no useful information is known (yet), so they don’t

appear in any of the “standard” DL axioms; second, the

introduction of language-level assertions in the KB-level would

inevitably introduce some non-standard KB-level information,

whose semantics should be taken into account by the inference

mechanism of the logic at hand.

Not surprisingly, the proposed alternative representations are not

without problems of their own, discussed in the respective

subsections. Such drawbacks are inherent in this approach, since

this is actually an effort to model (represent) two intrinsically

different types (levels) of information in the same representational

level. Nevertheless, the proposed representations constitute

interesting possible solutions to the problems described in the

previous section because they allow the collapse of two

representation levels into one. Both alternatives below will be

described for DLs; however, they can be straightforwardly used

for other logics as well, both in the logical and ontological setting.

3.1 First Alternative
This alternative originally appeared in earlier works by the author

[5], [6], [7] in order to allow the representation of language-level

ontology evolution operations using KB-level constructs. This

was necessary to the end of being able to define the problem of

ontology evolution in terms of the related field of belief change,

which was one of the main objectives of the aforementioned

works. Without the use of this alternative representation, only the

part of ontology evolution dealing with KB-level changes can be

described in terms of belief change.

Under this approach, the ontological signature is assumed static

and the same for all ontologies; in particular, it is assumed that an

ontological signature contains all possible element names (i.e., all

strings of finite length). This deprives the signature from its

original purpose of determining relevance of element names to the

domain and raises the issue of how can one determine relevant

and non-relevant element names.

There are two ways to resolve this problem. The first is to assume

that there is no issue of relevance. All elements are, in principle,

relevant to the domain of discourse, even though, for some of

them, no information is known (yet), so they don’t appear in any

axiom. This approach was termed the Open Vocabulary

Assumption (OVA) in [5]. Obviously, OVA causes the loss of all

signature information and renders all language-level operators

invalid, so it is not adequate for the purposes of this paper.

The second approach incorporates a new unary connective in the

underlying DL to denote relevance; this connective is called the

Existence Assertion Connective and is denoted by %. The

semantics of % is that the axiom “%A” should be implied by the

ontology if and only if the element A is relevant to the

conceptualization of the ontology (i.e., it would have been part of

the signature, if the standard approach was used). Using this

connective, we can determine whether an element is relevant to

the ontology or not, leading to what was termed the Closed

Vocabulary Assumption (CVA) [5].

Of course, the standard DL inference mechanism should be

amended in order to incorporate the semantics of the new

connective. In [5] the proper amendments were described, which

eventually boil down to two conditions: the first guarantees that

whenever an element A appears in a “standard” DL axiom, then

this DL axiom implies the “relevance” of the element (i.e., %A)

but not the relevance of any elements not appearing in the axiom

(e.g., %B); the second guarantees that axioms of the form “%A”

do not imply any “useful” KB-level information, in the sense that

no non-tautological “standard” axiom can be implied by any set

of assertions of the form %A.

It is clear that the % connective “downgrades” language-level

assertions into KB-level assertions, thus making possible the

representation of what should be language-level change

operations (and statements) using KB-level change operations

(and statements). For example, the addition of an element A is

now expressed as the addition of the axiom %A. The semantics of

the inference relation dictate what the side-effects of such

operations should be. For example, the removal of %A implies the

removal of all axioms that include A (otherwise %A would re-

emerge as an implication of such an axiom, due to the first

amendment of the inference relation described above).

This fact implies that it is easy to adapt some standard belief

change or ontology evolution algorithms so as to deal with

language-level operations; all we have to do is replace the

standard inference relation of the underlying logic/DL with the

modified one. Of course, this technique may work only for the

algorithms that are not tied to any particular logic/DL (and thus a

particular inference relation).

The major disadvantage of this method is that it requires the

addition of a non-standard connective in the logic, thus rendering

standard inference algorithms non-sound for inferences that

involve “fresh” elements, as well as non-complete for inferences

70

that involve the existence assertion connective. On the other hand,

it is relatively easy to implement and it is applicable to any logic.

It is possible, even though not necessary, to refine the connective

% so as to indicate whether an element is a class, role or

individual (in effect introducing three different existence assertion

connectives). Unfortunately, this refinement introduces an

additional (and unnecessary) complexity in the approach so it will

not be considered here. For a more detailed discussion on this

refinement, as well as on the other issues raised in this subsection,

see [5].

3.2 Second Alternative
This alternative maps DL information into FOL formulas, but,

instead of using the standard mapping [2], it employs a twist in

the way signature elements are viewed, resulting to a different

mapping. This non-standard mapping has the advantage that it

encapsulates the signature structure and allows it to be part of the

resulting FOL KB. The final result is similar to the previous

alternative: language-level assertions (change operations) can be

expressed using KB-level assertions (change operations).

In order to implement this alternative, a FOL is defined whose

language contains one predicate name for each connective

appearing in the DL and one function name for each operator

appearing in the DL. It also contains an infinite number of

individual names (constants), which will be used to represent all

possible element names that may appear in the ontological

signature. To cover all cases, any finite-length string will be

assumed to be a constant in said FOL (except, of course, from the

symbols reserved for functions and predicates). In addition, the

unary predicates Class(.), Property(.) and Instance(.) are included

in order to capture language-level assertions, i.e., that a respective

element name (a FOL constant in this representation) is a class,

property or instance respectively in the DL ontology.

The mapping of a DL axiom into this FOL is made by rewriting

the axiom using prefix (Polish) notation and then replacing each

connective and operator with its respective predicate or function

in the defined FOL. For example the axiom: “ R.A B C A”

would be mapped into the FOL formula:

“Con (Oper (Oper (R,A),B),Oper (C,A))”, where Con (.,.) is

the binary predicate attached to the DL connective and

Oper (.,.), Oper (.,.) are the binary functions attached to the DL

operators , respectively. Language-level assertions are

simpler to capture: Class(A), Property(A), Individual(A) imply

that A is a class, property, individual respectively.

The mapping of axioms and signature assertions to FOL ground

facts in the above manner is not enough, because the semantics of

the connectives and operators are not carried over. To achieve

this, the FOL KB should be coupled with a number of integrity

constraints guaranteeing the intuitively expected behavior of the

various FOL predicates and functions. For example, to guarantee

the transitive semantics of the Con predicate, we need the

constraint: “ x,y,z Con (x,y) Con (y,z) Con (x,y,z)”.

Similar constraints must be defined for the special predicates

Class, Property and Instance as well; the general idea is the same

as the one employed in order to amend the inference relation of

the previous alternative. Unfortunately, the constraints in this case

cannot be simplified by dropping the three predicates and keeping

just one as was done in the previous subsection; such a change

would not allow the detection of the invalidity of the statement

“Con (Oper (A,A),A), as it would not be possible to determine

that A in this statement is used both as a class and as a role.

It is clear by the above analysis that, for very expressive DLs, the

task of defining all the necessary integrity constraints is very

difficult; therefore, the difficulties involved in applying this

method are depending on the logic’s expressiveness (unlike the

first alternative). This constitutes the most important drawback of

this alternative, and makes it more adequate for less expressive

logical formalisms.

The role of “downgrading” the language-level assertions into KB-

level ones (undertaken by the % connective in the previous

approach) is now performed by the three special predicates Class,

Property, Instance. The same general comments on how this

allows language-level changes and how existing (belief change or

ontology evolution) algorithms could be used to address such

changes apply here.

4. EPILOGUE
In this paper, three different representation levels were introduced

(logic, language and KB) and an important distinction between

changes affecting each level was introduced. This discussion is

particularly relevant for the signature (language-level changes)

and the axiomatic part of an ontology (KB-level changes);

arguments were provided in favor of the discrimination of the two

change types, as well as against allowing side-effects caused by a

change to affect other levels.

Moreover, two alternative representation techniques were

introduced that allow the collapse of the two lower levels

(language and KB) into one (KB). These methodologies allow us

to execute both language-level and KB-level changes at the same

level (KB) and avoid the problem of side-effects caused from one

level to affect another. In addition, these approaches facilitate the

smoother integration of ontology evolution (dealing with

language-level and KB-level changes) and belief change (dealing

with KB-level changes only) approaches [7] and allow us to use

methods originally designed to handle KB-level changes for

language-level changes as well.

Even though these alternative representations suffer from various

deficiencies, they could prove useful when the aforementioned

collapse of the two levels into one is necessary. The deficiencies

of the proposed alternatives show the inherent difficulty of this

task and serve as an additional argument in favor of the proposed

definition of representation and change levels.

The discrimination of the three representation levels is a known

issue in the literature, but, to the best of the author’s knowledge,

the explicit classification of the various types of changes in three

levels based on the representation level they affect was never

considered before, except only superficially by earlier works of

the author [5], [6], [7], as well as in [12], where a similar problem

(variable forgetting) was addressed in the context of Propositional

Logic.

5. ACKNOWLEDGMENTS
Significant fragments of this work have benefited from

discussions with Carlo Meghini, Dimitris Plexousakis, Vassilis

Christophides and Yannis Tzitzikas. This work was carried out

during the author's tenure of an ERCIM “Alain Bensoussan”

Fellowship Program.

71

6. REFERENCES
[1] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and

Patel-Schneider, P. (eds). The Description Logic Handbook:

Theory, Implementation and Applications. Cambridge

University Press, 2002.

[2] Borgida, A. On the Relative Expressiveness of Description

Logics and Predicate Logics. Artificial Intelligence, 82,

1996, 353-367.

[3] Dean, M., Schreiber, G., Bechhofer, S., van Harmelen, F.,

Hendler, J., Horrocks, I., McGuiness, D., Patel-Schneider, P.,

and Stein, L. A. OWL Web Ontology Language Reference.

W3C Recommendation, 2004. Available at:

http://www.w3.org/TR/owl-ref

[4] Enderton, H. B. A Mathematical Introduction to Logic.

Academic Press, New York, 1972.

[5] Flouris, G. On Belief Change and Ontology Evolution. Ph.D.

Thesis, Department of Computer Science, University of

Crete, 2006.

[6] Flouris, G., Plexousakis, D., and Antoniou, G. Generalizing

the AGM Postulates: Preliminary Results and Applications.

In Proceedings of the 10th International Workshop on Non-

Monotonic Reasoning (NMR-04), 2004, 171-179.

[7] Flouris, G., Plexousakis, D., and Antoniou, G. Evolving

Ontology Evolution. In Proceedings of the 32nd International

Conference on Current Trends in Theory and Practice of

Computer Science (SOFSEM-06), Invited Talk, 2006.

[8] Gärdenfors, P. Belief Revision: An Introduction. In

Gärdenfors, P. (ed). Belief Revision, Cambridge University

Press, 1992, 1-20.

[9] Haase, P., and Sure, Y. D3.1.1.b State of the Art on

Ontology Evolution. SEKT Deliverable, 2004. Available at:

http://www.aifb.uni-

karlsruhe.de/WBS/ysu/publications/SEKT-D3.1.1.b.pdf

[10] Halaschek-Wiener, C., and Katz, Y. Belief Base Revision

For Expressive Description Logics. In Proceedings of OWL:

Experiences and Directions 2006 (OWLED-06), 2006.

[11] Kalfoglou, Y., and Schorlemmer, M. Ontology Mapping: the

State of the Art. Knowledge Engineering Review (KER), 18,

1, 2003, 1-31.

[12] Lang, J., Liberatore, P., and Marquis, P. Propositional

Independence: Formula-Variable Independence and

Forgetting. Journal of Artificial Intelligence Research

(JAIR), 18, 2003, 391-443.

[13] Meyer, T., Lee, K., and Booth, R. Knowledge Integration for

Description Logics. In Proceedings of the 20th National

Conference on Artificial Intelligence (AAAI-05), 2005.

[14] Miller, E., Swick, R., and Brickley, D. Resource Description

Framework (RDF) / W3C Semantic Web Activity. 2006.

Available at:

http://www.w3.org/RDF

[15] Newell, A. The Knowledge Level. Artificial Intelligence, 18,

1, 1982.

[16] Plessers, P., de Troyer, O., and Casteleyn, S. Event-based

Modeling of Evolution for Semantic-driven Systems. In

Proceedings of the 17th Conference on Advanced Information

Systems Engineering (CAiSE-05), 2005, 63-76.

[17] Qi, G., Liu, W., and Bell, D. A. A Revision-Based Approach

for Handling Inconsistency in Description Logics. In

Proceedings of the 11th International Workshop on Non-

Monotonic Reasoning (NMR-06), 2006.

[18] Qi, G., Liu, W., and Bell, D. A. Knowledge Base Revision in

Description Logics. In Proceedings of the 10th European

Conference on Logics in Artificial Intelligence (JELIA-06),

2006.

[19] Stojanovic, L., Maedche, A., Motik, B., and Stojanovic, N.

User-driven Ontology Evolution Management. In

Proceedings of the 13th International Conference on

Knowledge Engineering and Knowledge Management

(EKAW-02), 2002, 285-300.

[20] Stuckenschmidt, H., and Klein, M. Integrity and Change in

Modular Ontologies. In Proceedings of the 18th International

Joint Conference on Artificial Intelligence (IJCAI-03), 2003.

72

